1	(i)	$f(-x) = \frac{2(-x)}{1 - (-x)^2}$	M1	substitutin $-x$ for x in $f(x)$
		$=-\frac{2x}{1-x^2}=-f(x)$	A1	
			[2]	
	(ii)		M1 A1 [2]	Recognisable attempt at a half turn rotation about O Good curve starting from $x = -4$, asymptote $x = -1$ shown on graph. (Need not state -4 and -1 explicitly as long as graph is reasonably to scale.) Condone if curve starts to the left of $x = -4$.
		!/ 1 !/		

2	$fg(x) = \ln(1 + x^2) \qquad (x \in \Re)$	B1	condone missing bracket, and	If fg and gf the wrong way round, B1B0
	$gf(x) = 1 + (\ln x)^2$ (x > 0)	B1	missing or incorrect domains	not $1 + \ln(x^2)$
	$\ln(1+x^2)$ even	B1	Penalise missing bracket	
	$1 + (\ln x)^2$ neither	B1	Penalise missing bracket	
		[4]		

3	(i)	(One-way) stretch in y-direction, s.f. 2 or in x-direction s.f. $\frac{1}{2}$ translation 1 to right (2 if followed by x-stretch) y = 2 x-1	B1 B1 B1 [3]	must specify s.f. and direction o.e. e.g. $y = 2x-2 y = 2(x-1) $	Allow 'compress', 'squeeze'(for s.f. ½), but not 'enlarge', 'x-coordinates halved', etc Allow 'shift', 'move' or vector only, 'right 1' Don't allow misreads (e.g. transforming solid graph to dashed graph) Award B1 for one of these seen, and a second B1 if combined transformations are correct
	(ii)	Reflection in <i>x</i> -axis or translation right $\pm \pi$ or rotation of 180° [about O] translation +1 in <i>y</i> -direction (-1 if followed by reflection in <i>x</i> -axis $y = 1 - \cos x$	B1 B1 B1 [3]	$\begin{pmatrix} \pm \pi \\ 1 \end{pmatrix} \text{ is B2}$ allow 1 + cos(x ± π) (bracket needed)	Translations as above. Reflection: must specify axis, allow 'flip' Rotation: condone no origin stated. <i>See additional notes for other possible</i> <i>solutions.</i> Award B1 for any one of these seen, and a second B1 if combined transformations are correct

Q	Question		Answer	Marks	Guidance		
4	(i)		$1 - 9a^2 = 0$	M1	or $1 - 9x^2 = 0$	$\sqrt{(1-9a^2)} = 1 - 3a$ is M0	
			$\Rightarrow a^2 = 1/9 \Rightarrow a = 1/3$	A1	or 0.33 or better $\sqrt{(1/9)}$ is A0	not $a = \pm 1/3$ nor $x = 1/3$	
				[2]			
4	(ii)		Range $0 \le y \le 1$	B1	or $0 \le f(x) \le 1$ or $0 \le f \le 1$, not $0 \le x \le 1$	allow also [0,1], or 0 to 1 inclusive,	
					$0 \le y \le \sqrt{1}$ is B0	but not 0 to 1 or (0,1)	
				[1]			
4	(iii)			M1	curve goes from $x = -3a$ to $x = 3a$	must have evidence of using s.f. 3	
					(or -1 to 1)	allow also if s.f.3 is stated and	
						stretch is reasonably to scale	
				M1	vertex at origin		
				A1	curve, 'centre' $(0,-1)$, from $(-1, -1)$ to	allow from $(-3a, -1)$ to $(3a, -1)$	
					(1, -1) (y-coords of -1 can be inferred from	provided $a = 1/3$ or $x = [\pm] 1/3$ in (i)	
					vertex at O and correct scaling)	A0 for badly inconsistent scale(s)	
				[3]	-		

5	(i)	s(-x) = f(-x) + g(-x)	M1	must have $s(-x) = \dots$	
		$= -\mathbf{f}(x) + -\mathbf{g}(x)$			
		$= -(\mathbf{f}(x) + \mathbf{g}(x))$	A 1		
		$=-\mathbf{s}(x)$ (so s is odd)	A1 [2]		
	<i></i>				
	(ii)	$\mathbf{p}(-x) = \mathbf{f}(-x)\mathbf{g}(-x)$	M1	must have $p(-x) = \dots$	
		$=(-f(x)) \times (-g(x))$ = f(x)g(x) = p(x) so p is even	A1 [2]	Allow SC1 for showing that $p(-x) = p(x)$ using two specific odd functions, but in this case they must still show that p is even	e.g. $f(x) = x$, $g(x) = x^3$, $p(x) = x^4$ $p(-x) = (-x)^4 = x^4 = p(x)$, so p even condone f and g being the same function

6 (i)	f(-x) = f(x) Symmetrical about Oy.	B1 B1 [2]	
(ii)	(A) even(B) nei her(C) od	B1 B1 B1 [3]	

(ii) $f'(x) = -\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x$ $f'(x) = 0$ when $-\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x = 0$ $\Rightarrow \frac{1}{5}e^{-\frac{1}{5}x}(-\sin x + 5\cos x) = 0$ $\Rightarrow \sin x = 5\cos x$ $\Rightarrow \frac{\sin x}{\cos x} = 5$	B1 B1	$e^{-\frac{1}{5}x}\cos x$ $\frac{1}{5}e^{-\frac{1}{5}x}\sin x$ dividing by $e^{-\frac{1}{5}x}$
$\Rightarrow \tan x = 5^*$ $\Rightarrow x = 1.37(34)$ $\Rightarrow y = 0.75 \text{ or } 0.74(5)$	E1 B1 B1 [6]	www 1.4 or better, must be in radians 0.75 or better
(iii) $f(x+\pi) = e^{-\frac{1}{5}(x+\pi)} \sin(x+\pi)$ $= e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin(x+\pi)$ $= -e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin x$ $= -e^{-\frac{1}{5}\pi} f(x)^{*}$ $\int_{\pi}^{2\pi} f(x) dx \text{let } u = x - \pi, du = dx$ $= \int_{0}^{\pi} f(u+\pi) du$ $= e^{\pi} e^{-\frac{1}{5}\pi}$	M1 A1 A1 E1 B1 B1dep	$e^{-\frac{1}{5}(x+\pi)} = e^{-\frac{1}{5}x} \cdot e^{-\frac{1}{5}\pi}$ $\sin(x+\pi) = -\sin x$ www $\int f(u+\pi)du$ limits changed
$= \int_{0}^{\pi} -e^{-\frac{1}{5}\pi} f(u) du$ $= -e^{-\frac{1}{5}\pi} \int_{0}^{\pi} f(u) du $ Area enclosed between π and 2π	E1	using above result or repeating work
$= (-)e^{-\frac{1}{5}\pi} \times \text{ area between } 0 \text{ and } \pi.$	B1 [8]	or multiplied by 0.53 or better