1	(i)	$\begin{aligned} f(-x) & =\frac{2(-x)}{1-(-x)^{2}} \\ & =-\frac{2 x}{1-x^{2}}=-\mathrm{f}(x) \end{aligned}$	M1 A1 [2]	substitutin $-x$ for x in $\mathrm{f}(x)$
	(ii)		M1 A1 [2]	Recognisable attempt at a half turn rotation about O Good curve starting from $x=-4$, asymptote $x=-1$ shown on graph. (Need not state -4 and -1 explicitly as long as graph is reasonably to scale.) Condone if curve starts to the left of $x=-4$.

2		$\operatorname{fg}(x)=\ln \left(1+x^{2}\right)$	$(x \in \mathfrak{R})$	B1	condone missing bracket, and	If fg and gf the wrong way round, B1B0	
$\operatorname{gf}(x)=1+(\ln x)^{2}$	$(x>0)$	B1	missing or incorrect domains	not $1+\ln \left(x^{2}\right)$			
				B1	Penalise missing bracket		
			B1 $1+(\ln x)^{2}$ neither		Penalise missing bracket		

3	(i)	(One-way) stretch in y-direction, s.f. 2 or in x-direction s.f. $1 / 2$ translation 1 to right (2 if followed by x-stretch) $y=2\|x-1\|$	B1 B1 B1 [3]	must specify s.f. and direction o.e. e.g. $y=\|2 x-2\| y=\|2(x-1)\|$	Allow 'compress', ‘squeeze'(for s.f. $1 / 2$), but not 'enlarge', ' x-coordinates halved', etc Allow 'shift','move' or vector only, 'right 1' Don't allow misreads (e.g. transforming solid graph to dashed graph) Award B1 for one of these seen, and a second B1 if combined transformations are correct
	(ii)	Reflection in x-axis or translation right $\pm \pi$ or rotation of 180° [about O] translation +1 in y-direction (-1 if followed by reflection in x-axis $y=1-\cos x$	B1 B1 B1 [3]	$\binom{ \pm \pi}{1} \text { is B2 }$ allow $1+\cos (x \pm \pi)$ (bracket needed)	Translations as above. Reflection: must specify axis, allow 'flip' Rotation: condone no origin stated. See additional notes for other possible solutions. Award B1 for any one of these seen, and a second B1 if combined transformations are correct

Question		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & 1-9 a^{2}=0 \\ & \Rightarrow a^{2}=1 / 9 \Rightarrow a=1 / 3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$\begin{aligned} & \text { or } 1-9 x^{2}=0 \\ & \text { or } 0.33 \text { or better } \sqrt{ }(1 / 9) \text { is A0 } \end{aligned}$	$\begin{aligned} & \sqrt{ }\left(1-9 a^{2}\right)=1-3 a \text { is M0 } \\ & \text { not } a= \pm 1 / 3 \text { nor } x=1 / 3 \end{aligned}$
4	(ii)	Range $0 \leq y \leq 1$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	$\begin{aligned} & \text { or } 0 \leq \mathrm{f}(x) \leq 1 \text { or } 0 \leq \mathrm{f} \leq 1, \text { not } 0 \leq x \leq 1 \\ & 0 \leq y \leq \sqrt{ } 1 \text { is } \mathrm{B} 0 \end{aligned}$	allow also [0,1], or 0 to 1 inclusive, but not 0 to 1 or (0,1)
4	(iii)		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	curve goes from $x=-3 a$ to $x=3 a$ (or -1 to 1) vertex at origin curve, 'centre’ $(0,-1)$, from $(-1,-1)$ to $(1,-1)$ (y-coords of -1 can be inferred from vertex at O and correct scaling)	must have evidence of using s.f. 3 allow also if s.f. 3 is stated and stretch is reasonably to scale allow from $(-3 a,-1)$ to $(3 a,-1)$ provided $a=1 / 3$ or $x=[\pm] 1 / 3$ in (i) A0 for badly inconsistent scale(s)

5	(i)	$\begin{aligned} \mathrm{s}(-x) & =\mathrm{f}(-x)+\mathrm{g}(-x) \\ & =-\mathrm{f}(x)+-\mathrm{g}(x) \\ & =-(\mathrm{f}(x)+\mathrm{g}(x)) \\ & =-\mathrm{s}(x) \quad(\text { so s is odd }) \end{aligned}$	M1 A1 [2]	must have $s(-x)=\ldots$	
	(ii)	$\begin{aligned} & \mathrm{p}(-x)=\mathrm{f}(-x) \mathrm{g}(-x) \\ &=(-\mathrm{f}(x)) \times(-\mathrm{g}(x)) \\ &=\mathrm{f}(x) \mathrm{g}(x)=\mathrm{p}(x) \\ & \text { so } \mathrm{p} \text { is even } \end{aligned}$	M1 A1 [2]	must have $\mathrm{p}(-x)=\ldots$ Allow SC1 for showing that $\mathrm{p}(-x)=\mathrm{p}(x)$ using two specific odd functions, but in this case they must still show that p is even	e.g. $\mathrm{f}(x)=x, \mathrm{~g}(x)=x^{3}, \mathrm{p}(x)=x^{4}$ $p(-x)=(-x)^{4}=x^{4}=p(x)$, so p even condone f and g being the same function

6 (i)f(-x) $=\mathrm{f}(x)$ Symmetrical about Oy.	B1		
		B1	
	[2]		
(ii)(A) even (B) nei her (C) od	B1		
	B1		

7 (i) (A) (B)	B1 B1 M1 A1 [4]	Zeros shown every $\pi / 2$. Correct shape, from $-\pi$ to π Translated in x-direction π to the left

$\text { (ii) } \begin{aligned} & \mathrm{f}^{\prime}(x)=-\frac{1}{5} e^{-\frac{1}{5} x} \sin x+e^{-\frac{1}{5} x} \cos x \\ & \mathrm{f}^{\prime}(x)=0 \text { when }-\frac{1}{5} e^{-\frac{1}{5} x} \sin x+e^{-\frac{1}{5} x} \cos x=0 \\ & \Rightarrow \frac{1}{5} e^{-\frac{1}{5} x}(-\sin x+5 \cos x)=0 \\ & \Rightarrow \sin x=5 \cos x \\ & \Rightarrow \frac{\sin x}{\cos x}=5 \\ & \Rightarrow \tan x=5^{*} \\ & \Rightarrow x=1.37(34 \ldots) \\ & \Rightarrow y=0.75 \text { or } 0.74(5 \ldots) \end{aligned}$	B1 B1 M1 E1 B1 B1 [6]	$\begin{aligned} & e^{-\frac{1}{5} x} \cos x \\ & \ldots-\frac{1}{5} e^{-\frac{1}{5} x} \sin x \end{aligned}$ dividing by $e^{-\frac{1}{5} x}$ www 1.4 or better, must be in radians 0.75 or better
(iii) $\begin{aligned} & \mathrm{f}(x+\pi)=e^{-\frac{1}{5}(x+\pi)} \sin (x+\pi) \\ & =e^{-\frac{1}{5} x} e^{-\frac{1}{5} \pi} \sin (x+\pi) \\ & =-e^{-\frac{1}{5} x} e^{-\frac{1}{5} \pi} \sin x \\ & =-e^{-\frac{1}{5} \pi} \mathrm{f}(x)^{*} \\ & \int_{\pi}^{2 \pi} \mathrm{f}(x) d x \text { let } u=x-\pi, \mathrm{d} u=\mathrm{d} x \\ & =\int_{0}^{\pi} \mathrm{f}(u+\pi) d u \\ & =\int_{0}^{\pi}-e^{-\frac{\pi}{5} \pi} \mathrm{f}(u) d u \\ & =-e^{-\frac{1}{5} \pi} \int_{0}^{\pi} \mathrm{f}(u) d u^{*} \end{aligned}$ Area enclosed between π and 2π $=(-) e^{-\frac{1}{5} \pi} \times$ area between 0 and π.	M1 A1 A1 E1 B1 B1dep E1 B1 [8]	$\begin{aligned} & e^{-\frac{1}{5}(x+\pi)}=e^{-\frac{1}{5} x} \cdot e^{-\frac{1}{5} \pi} \\ & \sin (x+\pi)=-\sin x \\ & \mathrm{www} \end{aligned}$ $\int f(u+\pi) d u$ limits changed using above result or repeating work or multiplied by 0.53 or better

